首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   71篇
  国内免费   36篇
  2023年   9篇
  2022年   11篇
  2021年   37篇
  2020年   27篇
  2019年   35篇
  2018年   28篇
  2017年   25篇
  2016年   39篇
  2015年   64篇
  2014年   58篇
  2013年   67篇
  2012年   66篇
  2011年   70篇
  2010年   24篇
  2009年   34篇
  2008年   41篇
  2007年   29篇
  2006年   43篇
  2005年   28篇
  2004年   17篇
  2003年   29篇
  2002年   25篇
  2001年   27篇
  2000年   20篇
  1999年   21篇
  1998年   14篇
  1997年   19篇
  1996年   12篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1982年   3篇
  1980年   4篇
  1979年   3篇
  1976年   3篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1972年   4篇
  1971年   6篇
  1970年   3篇
  1968年   2篇
排序方式: 共有1027条查询结果,搜索用时 21 毫秒
91.
92.
Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development.  相似文献   
93.
94.
Zhao Y  Sun Y  Zang Z  Xu X  Zhang Z  Zhong L  Zan W  Zhao Y  Sun L 《Molecular biology reports》2011,38(4):2455-2462
MPEG was modified with 1,1′-carbonyldiimidazole, then the activated MPEG reacted with primary amino groups of chitosan. Synthesize the graft copolymer of chitosan and polyethylene glycol in two steps. The structure of the copolymer was characterized by FT-IR and 1H-NMR. It agrees with the PEG content of classical stealth nanoparticles materials. The X-ray diffraction and DSC analysis proved that the crystallinity of the copolymer increased. It is a promising material for the stealth nanoparticles. It is a potential new carrier for the drug delivery systems of long-circulation and solid carcinoma.  相似文献   
95.
乙醇对大鼠心肌动作电位及人Kv1.5通道的影响   总被引:1,自引:0,他引:1  
Hu H  Zhou J  Sun Q  Yu XJ  Zhang HL  Ma X  Liu CH  Zang WJ 《生理学报》2011,63(3):219-224
为了研究乙醇对心肌动作电位的作用及其机制,本实验采用标准玻璃微电极细胞内记录技术记录离体大鼠心肌细胞的动作电位(action potential,AP),采用全细胞膜片钳技术记录HEK293细胞上表达的人Kv1.5(human Kv1.5,hKv1.5)通道电流,观察6.25、12.5、25.0、50.0、100.0及...  相似文献   
96.
Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Jumonji domain containing 2B (JMJD2B) is a newly identified histone demethylase that regulates chromatin structure or gene expression by removing methyl residues from trimethylated lysine 9 on histone H3. Recent observations have shown oncogenic activity of JMJD2B. We explored the functional role of JMJD2B in cancer cell proliferation, survival and tumorigenesis, and determined its expression profile in gastric cancer. Knocking down JMJD2B expression by small interfering RNA (siRNA) in gastric and other cancer cells inhibited cell proliferation and/or induced apoptosis and elevated the expression of p53 and p21(CIP1) proteins. The enhanced p53 expression resulted from activation of the DNA damage response pathway. JMJD2B knockdown markedly suppressed xenograft tumor growth in vivo in mice. Moreover, JMJD2B expression was increased in primary gastric-cancer tissues of humans. Thus, JMJD2B is required for sustained proliferation and survival of tumor cells in vitro and in vivo, and its aberrant expression may contribute to the pathogenesis of gastric cancer.  相似文献   
97.
The steroid hormone progesterone is an essential regulator of the cellular processes that are required for the development and maintenance of reproductive function. The diverse effects of progesterone are mediated by the progesterone receptor (PR). The functions of the PR are regulated not only by ligands but also by modulators of various cell signaling pathways. However, it is not clear which energy state regulates PR activity. AMP-activated protein kinase (AMPK), a serine/threonine protein kinase, is a key modulator of energy homeostasis. Once activated by an increasing cellular AMP:ATP ratio, AMPK switches off ATP-consuming processes and switches on ATP-producing processes. We found that both 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) and metformin, traditional pharmacological activators of AMPK, inhibited the PR pathway, as evidenced by progesterone response element (PRE)-driven luciferase activity and PR target gene expression. Compound C, an inhibitor of AMPK, partly but significantly reversed the anti-PR effects of AICAR and metformin. The downregulation of endogenous AMPK by small interfering RNAs (siRNAs) stimulated PR activity. AMPK activation by AICAR decreased the progesterone-induced phosphorylation of PR at serine 294 and inhibited the recruitment of PR to an endogenous PRE. Taken together, our data suggest that AMPK, an energy sensor, is involved in the regulation of PR signaling.  相似文献   
98.
Protein arginine methyltransferase 1 (PRMT1) catalyzes the mono- and dimethylation of certain protein arginine residues. Although this posttranslational modification has been implicated in many physiological processes, the molecular basis for PRMT1 substrate recognition is poorly understood. Most modified arginine residues in known PRMT1 substrates reside in repeating "RGG" sequences. However, PRMT1 also specifically methylates Arg3 of histone H4 in a region that is not glycine-arginine rich, suggesting that PRMT1 substrates are not limited to proteins bearing "RGG" sequences. Because a systematic evaluation of PRMT1 substrate specificity has not been performed, it is unclear if the "RGG" sequence accurately represents the consensus target for PRMT1. Using a focused peptide library based on a sequence derived from the in vivo substrate fibrillarin we observed that PRMT1 methylated substrates that had amino acid residues other than glycine in the "RX (1)" and "RX (1)X (2)" positions. Importantly, eleven additional PRMT1 substrate sequences were identified. Our results also illustrate that the two residues on the N-terminal side of the modification site are important and need not both be glycine. PRMT1 methylated the eukaryotic initiation factor 4A1 (eIF4A1) protein, which has a single "RGG" sequence. Methylation of eIF4A1 and the similar eIF4A3 could be affected using single site mutations adjacent to the modification site, demonstrating the importance of amino acid sequence in PRMT1 protein substrates. Dimethylation of the parent library peptide was shown to occur through a dissociative mechanism. In summary, PRMT1 selectively recognizes a set of amino acid sequences in substrates that extend beyond the "RGG" paradigm.  相似文献   
99.
Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser(428), and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKbeta, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases.  相似文献   
100.
Raf kinases are essential for regulating cell proliferation, survival, and tumorigenesis. However, the mechanisms by which Raf is activated are still incompletely understood. Phosphorylation plays a critical role in Raf activation in response to mitogens. The present study characterizes phosphorylation of Ser338, a crucial event for Raf-1 activation. Here we report that mutation of Lys375 to Met diminishes phosphorylation of Ser338 on both wild type Raf-1 in cells treated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and a constitutively active mutant in which Tyr340/Tyr341 are replaced by 2 aspartic acids, a conserved substitution present in natural B-Raf. The loss of Ser338 phosphorylation in these Raf mutants is not engendered by a mutation-induced conformational change, inasmuch as mutation of another site (Ser471 to Ala) in the activation segment also abolishes Ser338 phosphorylation, whereas both the kinase-dead mutants of Raf-1 are phosphorylated well by active Pak1. Furthermore, our data demonstrate that EGF-stimulated phosphorylation of Ser338 is inhibited by Sorafenib, a Raf kinase inhibitor, but not by the MEK inhibitor U0126. Interestingly, a kinase-dead mutation and Sorafenib also markedly reduce phosphorylation of Ser445 on B-Raf, a site equivalent to Raf-1 Ser338. Finally, our data reveal that Ser338 is phosphorylated on inactive Raf-1 by an active mutant of Raf-1 when they are dimerized in cells and that artificial dimerization of Raf-1 causes Ser338 phosphorylation, accompanied by activation of ERK1/2. Altogether, our data suggest that Ser338 on Raf-1 is autophosphorylated in response to mitogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号